Abramitzky, Ran, Leah Boustan, Katherine Eriksson, James Feigenbaum, and Santiago Pérez. (2021). “Automated Linking of Historical Data.”
Journal of Economic Literature 59(3): 865–918.
https://doi.org/10.1257/jel.20201599
Ding, H., C. Dai, Y. Wu, W. Ma, H.Zhou (2024). “Setem: Self-ensemble training with pre-trained language models for entity matching.”
Knowledge-Based Systems 293: 111708.
https://doi.org/10.1016/j.knosys.2024.111708
Doll, Hendrik, Eniko Gabor-Toth, and Christopher-Johannes Schild. 2021. “Linking Deutsche Bundesbank Company Data.” Deutsche Bundesbank, Research Data and Service Centre.
Ebraheem, Muhammad, Saravanan Thirumuruganathan, Shafiq Joty, Mourad Ouzzani, and Nan Tang. 2018.
“Distributed Representations of Tuples for Entity Resolution.” Proceedings of the VLDB Endowment 11 (11): 1454–67.
https://doi.org/10.14778/3236187.3236198.
Feigenbaum, James J. (2016). “A Machine Learning Approach to Census Record Linking.”
Working Paper.
https://jamesfeigenbaum.github.io/research/pdf/census-link-ml.pdf
Feigenbaum, James J., Jonas Helgertz, and Joseph Price. (2025). “Examining the role of training data for supervised methods of automated record linkage: Lessons for best practice in economic history”.
Explorations in Economic History 96: 101656.
https://doi.org/10.1016/j.eeh.2025.101656.
Helgertz, Jonas, Joseph Price, Jacob Wellington, Kelly J. Thompson, Steven Ruggles, and Catherine A. Fitch. (2022). “A New Strategy for Linking U.S. Historical Censuses: A Case Study for the IPUMS Multigenerational Longitudinal Panel.”
Historical Methods: A Journal of Quantitative and Interdisciplinary History 55(1): 12–29.
https://doi.org/10.1080/01615440.2021.1985027
Hamming, Richard W. 1950.
“Error Detecting and Error Correcting Codes.” The Bell System Technical Journal 29 (2): 147–60.
https://doi.org/10.1002/j.1538-7305.1950.tb00463.x.
Huang, J., W. Hu, Z. Bao, Q. Chen, and Y. Qu. (2022). “Deep entity matching with adversarial active learning.”
The VLDB Journal 32(1): 229–255.
https://link.springer.com/article/10.1007/s00778-022-00745-1
Jin, Di, Bunyamin Sisman, Hao Wei, Xin Luna Dong, and Danai Koutra. 2021.
“Deep Transfer Learning for Multi-Source Entity Linkage via Domain Adaptation.” In
Proceedings of the VLDB Endowment, 15:465–77.
https://doi.org/10.14778/3494124.3494131.
Price, Joseph, Kasey Buckles, Jacob Van Leeuwen, and Isaac Riley. (2021). “Combining Family History and Machine Learning to Link Historical Records: The Census Tree Data Set.”
Explorations in Economic History 80: 101391.
https://doi.org/10.1016/j.eeh.2021.101391
Levenshtein, Vladimir Iosifovich. 1965. “Binary Codes Capable of Correcting Deletions, Insertions, and Reversals.” In Proceedings of the USSR Academy of Sciences, 163:845–48. Russian Academy of Sciences.
Li, Peng, Xiang Cheng, Xu Chu, Yeye He, and Surajit Chaudhuri. 2021.
“Auto-FuzzyJoin: Auto-Program Fuzzy Similarity Joins Without Labeled Examples.” In
Proceedings of the 2021 International Conference on Management of Data, 1064–76.
https://doi.org/10.1145/3448016.3452824.
Low, J. F., B. C. Fung, and P. Xiong. (2024). “Better entity matching with transformers through ensembles.”
Knowledge-Based Systems 293: 111678.
https://doi.org/10.1016/j.knosys.2024.111678
Mudgal, Sidharth, Han Li, Theodoros Rekatsinas, AnHai Doan, Youngchoon Park, Ganesh Krishnan, Rohit Deep, Esteban Arcaute, and Vijay Raghavendra. 2018.
“Deep Learning for Entity Matching: A Design Space Exploration.” In
Proceedings of the 2018 International Conference on Management of Data, 19–34.
https://doi.org/10.1145/3183713.3196926.
Sadinle, Mauricio. 2017.
“Bayesian Estimation of Bipartite Matchings for Record Linkage.” Journal of the American Statistical Association 112 (518): 600–612.
https://doi.org/10.1080/01621459.2016.1148612.
Singh, Rohit, Venkata Vamsikrishna Meduri, Ahmed Elmagarmid, Samuel Madden, Paolo Papotti, Jorge-Arnulfo Quiané-Ruiz, Armando Solar-Lezama, and Nan Tang. 2017.
“Synthesizing Entity Matching Rules by Examples.” Proceedings of the VLDB Endowment 11 (2): 189–202.
https://doi.org/10.14778/3149193.3149199.
Stringham, Thomas. 2022.
“Fast Bayesian Record Linkage With Record-Specific Disagreement Parameters.” Journal of Business & Economic Statistics 40 (4): 1509–22.
https://doi.org/10.1080/07350015.2021.1934478.
Universitätsbibliothek Mannheim. 2019a.
“Handbuch Der Deutschen Aktiengesellschaften.” Heppenheim (Bergstr.), Berlin: urn:nbn:de:bsz:180-dighop-181; Hoppenstedt.
http://digi.bib.uni-mannheim.de/urn/urn:nbn:de:bsz:180-dighop-181.
———. 2019b.
“Wer Leitet.” Heppenheim (Bergstr.), Berlin: urn:nbn:de:bsz:180-dighop-43; Hoppenstedt.
http://digi.bib.uni-mannheim.de/urn/urn:nbn:de:bsz:180-dighop-43.
Wang, Zhengyang, Bunyamin Sisman, Hao Wei, Xin Luna Dong, and Shuiwang Ji. 2020.
“CorDEL: A Contrastive Deep Learning Approach for Entity Linkage.” In
2020 IEEE International Conference on Data Mining (ICDM), 1322–27. IEEE.
https://doi.org/10.1109/ICDM50108.2020.00171.
Wu, Renzhi, Sanya Chaba, Saurabh Sawlani, Xu Chu, and Saravanan Thirumuruganathan. 2020.
“Zeroer: Entity Resolution Using Zero Labeled Examples.” In
Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data, 1149–64.
https://doi.org/10.1145/3318464.3389743.
Yao, D., Y. Gu, G. Cong, G. Jin, and X. Lv (2022). “Entity resolution with hierarchical graph attention networks.” In:
Proceedings of the 2022 International Conference on Management of Data, pp. 429–442.
https://dl.acm.org/doi/10.1145/3514221.3517872